SHORT PAPER

Reaction of 2-benzoyl-1,2-dihydroisoquinoline-1carbonitrile tetrafluoroborate salt with 2arylmethylene-1,3-indanediones. Regio- and stereochemistry of the reaction. Formation of spiro compounds[†]

Sarra Boudriga^a, Mohiedinne Askri^a, Mohamed Rammah^{a*} and Karin Monnier-Jobé^b

^a Laboratoire de Physico-Chimie des Interfaces, Faculté des Sciences et Techniques, Route de Kairouan, 5000 Monastir, Tunisia

^b Laboratoire de Chimie des Matériaux et Interfaces, UFR Sciences et Techniques, 16 Route de Gray, F-25030 Besançon, France

The regio- and stereochemistry of spiro-adducts derived from [4+2] cycloaddition between the title compounds were deduced by ¹H NMR data and the elucidated structure of the tetrasubstituted pyrroles obtained by acidic hydrolysis.

Keywords: isoquinolines, Reissert compounds, pyrroles, spiro compounds

Previous studies^{1,2} have established that solutions of tetrafluoroborate salts of 2-acyl-1,2-dihydroisoquinoline-1-carbonitriles (Reissert compounds) exist as equilibrium mixtures of **1-4**, with **4** being the major component (Scheme 1). According to McEwen and coworkers², acid-catalysed condensationrearrangement of these salts with alkenes afford substituted 2-(1-isoquinolinyl)pyrroles **5** (Scheme 1). The initial step of this process is a Diels-Alder reaction involving **4** as the heterodiene.²⁻⁴

As a part of the research of our group on the reactivity of the tetrafluoroborate salts of Reissert compounds,³⁻⁵ we report

Scheme 1 Cycloaddition to Reissert compound tetrafluoroborates

here the reaction of a tetrafluoroborate salt 1-4 (R = Ph) with some 2-arylmethylene-1,3-indanediones **6a–d**. To our knowledge, the only published study of the dienophilic reactivity of enones with a Reissert salt was our own previous report.⁴

According to the results of McEwen *et al.*² and to previous work of our group,³⁻⁵ spiro[4-aryl-5-hydroxy-2-(1-isoquinolinyl)-5-phenyl-4,5-dihydro-3*H*-pyrrole-3:2'-1',3'-indanediones] **9** result from the initial Diels–Alder reaction of the heterodiene **4** (R = Ph), followed by a rearrangement sequence involving the intermediate species **7** and **8** (Scheme 2).

Determination of the structure of compounds **9** has enabled us to establish the regio- and stereochemistry of the reaction. The regiochemistry of the reaction corresponds to that which is usually observed^{2–5} in the case of a dienophilic alkene activated by an electron-withdrawing group: this group is always

^{*} To whom correspondence should be addressed. E-mail: mohamed.rammah@voila.fr

[†] This is a Short Paper, there is therefore no corresponding material in *J Chem. Research* (M).

Fig. 1 Hypothetical formation of $\mathbf{9^{\prime}}$ from, reverse cycloaddition mode.

Scheme 3 Formation of the pyrroles 11.

found at the 3-position of the resulting pyrrole. In the case of the reverse regiochemistry, the product from the initial cycloadduct would be a 4,5-dihydropyrrole **9'** (Fig. 1) and the presence of the pyrroline NH should be easily characterised by IR and ¹H NMR spectroscopy.

Moreover, the observation of a long range coupling ${}^{4}J = 0.90 - 1.45$ Hz between OH and H⁴ allows us to propose a

trans-pseudoaxial conformation for OH and H⁴ in order to attain the W disposition.^{4–6} This proposition was confirmed on the one hand by a decoupling double-irradiation experiment, and on the other hand by the disappearance of the signal of the OH proton after addition of D₂O, whereupon the signal of the H⁴ proton became a singlet. It is in good agreement with the more thermodynamically stable *trans*-disubstitution for the two 4- and 5-aryl groups.

Refluxing compounds **9** in an AcOH : HCl 12N (10:1) mixture yields quantitatively products **11** (Scheme 3). Acid-promoted dehydration is followed by the attack of a water molecule on the ring of the indanedione. The acid-catalysed isomerisation of the strained spiro compounds **9** thus gives the more stable pyrroles **11** in good yield. Elemental analysis, IR, ¹H, ¹³C NMR data are in good agreement with the proposed structures.

Experimental

Melting points were determined on a Kofler bank. IR spectra were recorded from KBr pellets ($5^{\circ}/_{oo}$ dispersion) with a Vector 22 spectrometer; only structurally important peaks (v) are reported. NMR spectra were recorded with a Bruker-Spectrospin AC 250 spectrometer operating at 250 MHz for ¹H and 62.9 MHz for ¹³C. The NMR solvents were CDCl₃ for the compounds **6**, DMSO-d₆ for the spiro-compounds **9**, and C₅D₅N for the pyrroles **11**. Elemental analyses were performed by the Microanalysis Center of Claude Bernard University (Lyon I Vernaison). The tetrafluoroborate **4** (R = Ph) was prepared according to the literature.²⁻⁵

2-Benzylidene-1,3-indanediones **6**: These compounds were obtained by an adaptation of a published procedure.⁷ General procedure: 1,3-Indanedione {20 mmoles} and the arylaldehyde (20 mmol) in toluene (50 ml) were refluxed 24 hrs with a catalytic amount of *p*-toluenesulfonic acid, removing water using a Dean-Stark apparatus. The reaction mixture was poured into water (100 ml) and extracted with ether (3×50 ml). The organic phase was washed with water (3×50 ml) and dried over anhydrous Na₂SO₄. The solvents were evaporated off and the residue dissolved into and crystallised from 50 ml of an ethanol : toluene (50 : 50) mixture. The products (**6a–d**) agreed in melting-points and IR and NMR spectra with data previously published.^{7,8}

 Table 1
 Physical and spectroscopic data of the spiro[4-aryl-5-hydroxy-2-(1-isoquinolinyl)-5-phenyl-4,5-dihydro-3H-pyrrole-3:2'-1',3'-indanediones]

Compound	Ar	M.p./ °C	yield /%	v _{C=0}	$\frac{IR/cm^{-1}}{\nu_{C=N}}$	V _{OH}	¹ Η NMR / ¹³ C NMR/δ ppm
9a	C_6H_5	228	65	1739, 1692	1611	3381	3.94 (d, 1H, ⁴ <i>J</i> = 0.90, H4); 6.49 (br.s., 1H, OH); 7.05–9.81 (m, 20 arom. H) 63.3 (C ⁴); 77.85 (C ^{3.2'}); 103.9 (C ⁵); 122.65–173.5 (23 sigs, C ² and 27 ar. C); 197.75, 198.15 (2 C=O)
9b	<i>p</i> -C ₆ H ₄ CH ₃	238	60	1735, 1694	1611	3380	2.21 (s, 3H, CH ₃); 3.93 (d, 1H, ${}^{4}J$ = 1.15, H4); 6.44 (br.s., 1H, OH);6.86–9.82 (m, 19 arom. H) 20.25 (CH ₃); 63.0 (C ⁴); 77.7 (C ^{3:2'}); 103.85 (C ⁵); 122.6–173.45 (21 sig., C ² , 27 ar. C); 196.9, 198.3 (2 C=O)
9c	p-C ₆ H₄OCH ₃	223	70	1733, 1686	1610	3402	3.58 (s, 3H, OCH ₃); 3.93 (d, 1H, ${}^{4}J$ = 1.45, H4); 6.47 (br.s., 1H, OH); 6.62–9.85 (m, 19arom. H) 54.65 (OCH ₃); 62.65 (C ⁴); 77.75 (C ^{3.2}); 103.75 (C ⁵); 122.6–173.5 (21sig, C ² , 27 ar C); 196.9, 198.3 (2 C=O)
9d	<i>p</i> -C ₆ H ₄ NO ₂	226	58	1738, 1706	1600	3413	4.10 (d, 1H, ⁴ <i>J</i> = 1.05, H4); 7.70 (br.s., 1H, OH); 7.31–9.87 (m, 19 arom. H) 62.7 (C ⁴); 78.65 (C ^{3.2}); 104.15 (C ⁵); 122.35–173.15 (21 sig C ² , 27 ar C); 195.90, 197.80 (C=O)

Table 2 Physical and spectroscopic data of the 2-[[4-aryl-2-(1-isoquinolinyl)-5-phenylpyrrol-3-yl]carbonyl]benzoic acids 9

Compound	Ar	M.p./ °C	yield /%	v _{C=0}	IR/cm ⁻¹ v _{NH}	V _{СООН}	¹ H NMR / ¹³ C NMR/δ ppm
11a	C_6H_5	248	93	1688, 1651	3208	2750–3700	6.57–8.67 (m, 20 arom. H and OH); 13.22 (s, 1H, NH) 120.75–154.45 (27 signals for 31 arom. C); 169.2 (C=O) _{acid} ; 192.4 (C=O)
11b	p-C ₆ H ₄ CH ₃	252	94	1701, 1654	3200	2600–3650	2.17 (s, 3H, CH ₃); 6.83–8.66 (m, 19 arom. H and OH); 13.15 (s, 1H, NH) 21.1 (CH ₃); 120.70–154.75 (27 signals for 31 arom. C); 169.15 (C=O) $_{\rm acid}$; 192.45 (C=O)
11c	p-C ₆ H₄OCH ₃	245	94	1700, 1640	3223	2500–3700	3.60 (s, 3H, OCH ₃); 6.60–8.66 (m, 19 arom. H and OH); 13.15 (s, 1H, NH) 55.1 (OCH ₃); 113.90–158.85 (27 signals for 31 arom. C); 169.2 (C=O) _{acid} ; 192.55 (C=O)
11d	p-C ₆ H ₄ NO ₂	261	96	1690, 1640	3300	2400–3600	7.17–8.66 (m, 19 arom. H and OH); 13.47 (s, 1H, NH) 121.0–153.75 (27 signals for 31 arom. C); 169.05 (C=O) _{acid} ; 192.5 (C=O)

 Table 3
 Analytical data of compounds 9a-d and 11a-d

Compound	Molecular	Found/calc. (%)				
	formula	С	Н	N		
9a	$C_{33}H_{22}N_2O_3$	80.16 80.04	4.45 4.53	5.67 5.42		
9b	$C_{34}H_{24}N_2O_3$	80.31 80.54	4.72 4.73	5.51 5.42		
9c	$C_{34}H_{24}N_{2}O_{4}$	77.86 78.04	4.58 4.63	5.34 5.12		
9d	$C_{33}H_{21}N_3O_5$	73.33 73.15	4.07 4.13	7.77 7.82		
11a	$C_{33}H_{22}N_2O_3$	80.16 80.34	4.45 4.33	5.67 5.57		
11b	$C_{34}H_{24}N_2O_3$	80.31 80.71	4.72 4.63	5.51 5.48		
11c	$C_{34}H_{24}N_2O_4$	77.86 77.84	4.58 4.73	5.34 5.42		
11d	$C_{33}H_{21}N_3O_5$	73.33 73.25	4.07 4.13	7.77 7.92		

Spiro[4-aryl-5-hydroxy-2-(1-isoquinolinyl)-5-phenyl-4,5-dihydro-3H-pyrrole-3:2'-1',3'-indanediones] **9**: General procedure: Each enone **6** (0.5 g) was dissolved in DMF (20 ml) in a 100 ml Erlenmeyer flask. The tetrafluoroborate **4** (R = Ph) (0.6 g) was added and the mixture was magnetically stirred at 50°C. When all the salt **4** was dissolved, the reaction mixture was poured onto crushed ice. After filtration, the solid was washed with water. The obtained products **9** were crystallised from an ethanol : toluene (95 : 5) mixture (Table 1). Analytical data are listed in Table 3.

4-Aryl-2-(1-isoquinolinyl)-3-o-carboxybenzoyl-4-phenylpyrroles 11: General procedure: Each spiro-compound 9 (0.5 g) was dissolved in acetic acid (15 ml) and 12N HCl (three drops) were added. The mixture was refluxed 4 hrs and then poured into iced water. The obtained solid pyrrole 11 was crystallised from an ethanol : toluene (95 : 5) mixture (Table 2). Analytical data are listed in Table 3. Received 10 May 2002; accepted 3 December 2002 Paper 02/1386

References

- M.J. Cook, A.R. Katritzky, and A. Page, J. Am. Chem. Soc., 1977, 99, 165.
- 2 W.E. McEwen, C.C. Cabello, A.M. Calabro, A.M. Ortega, P.E. Stott, A.J. Zapata, C.M. Zepp, and J.J. Lubinkowski-Page, *J. Org. Chem.*, 1979, 44, 111.
- G. Schmitt, B. Laude, J. Vebrel, N. Rodier, and F. Theobald, *Bull. Soc. Chim. Belges*, 1989, 98, 113; G. Schmitt, B. Nasser, Nguyen Dinh An, B. Laude, and M. Roche, *Can. J. Chem.*, 1990, 68, 863; K. Monnier, G. Schmitt, M-F. Mercier, N. Rodier, and F. Theobald, *Bull. Soc. Chim. Belges*, 1992, 101, 109; K. Monnier, G. Schmitt, B. Laude, M. M. Kubicki, and P. Boudot, *J. Chem. Res.*, 1994, (S) 64, (M) 428.
- 4 K. Monnier, G. Schmitt, B. Laude, F. Théobald, and N. Rodier, *Tetrahedron Lett.*, 1992, 33, 1609. D. Adnani, G. Schmitt, K. Monnier, B. Laude, M. M. Kubicki, and M. Janin, *J. Chem. Res.*, 1996, (S) 74, (M) 534; J. Vebrel, M. Msaddek, F. Djapa, K. Ciamala, and B. Laude, *Eur. J. Org. Chem.*, 1998, 2855.
- 5 M. Msaddek, M. Rammah, K. Ciamala, J. Vebrel, and B. Laude, Bull. Soc. Chim. Belges, 1997, 116, 825.
- 6 A. Gaudemer, in *Stereochemistry, Fundamentals and Methods*, *Vol. 1 Spectrometric Methods*, Ed. H. B. Kagan, Georg Thieme Publ., Stuttgart, 1977, p. 103.
- 7 L. Geita and G. Vanags, J. Gen. Chem. USSR, 1956, 26, 3149.
- Y. Poirier and N. Lozac'h, *Bull. Soc. Chim. France*, 1966, 1062;
 N.A. Dimond and T.K. Mukherjee, *Disc. Faraday Soc.*, 1971, 51, 102.